(10x-3)=(x^2+12)

Simple and best practice solution for (10x-3)=(x^2+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (10x-3)=(x^2+12) equation:



(10x-3)=(x^2+12)
We move all terms to the left:
(10x-3)-((x^2+12))=0
We get rid of parentheses
10x-((x^2+12))-3=0
We calculate terms in parentheses: -((x^2+12)), so:
(x^2+12)
We get rid of parentheses
x^2+12
Back to the equation:
-(x^2+12)
We get rid of parentheses
-x^2+10x-12-3=0
We add all the numbers together, and all the variables
-1x^2+10x-15=0
a = -1; b = 10; c = -15;
Δ = b2-4ac
Δ = 102-4·(-1)·(-15)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{10}}{2*-1}=\frac{-10-2\sqrt{10}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{10}}{2*-1}=\frac{-10+2\sqrt{10}}{-2} $

See similar equations:

| x/3+3x=10 | | (7/10)^x-5^5-x=0 | | 1730=5921(x) | | 1/x+3+4/x+5=5/(x+3)(x+5) | | X+4y-2=20 | | 4(r+8)=2(2r-10) | | (0.9)^t=0.1 | | -31/3(x+7)=6 | | 3x+2(2x)=126 | | 5x+8=2x–3 | | 1600=20x | | 6x+4=-4x+6 | | 126/2=2x | | 2+2(2x)=126 | | 2(2x)=126 | | 3x=2(2x)=126 | | 9x^2-90x+144=0 | | 3x+x=3000 | | 3000/3=x | | (2^t-4)+2^t=120 | | 2^t-4+2^t=120 | | 3000=3/x | | 3000=3x | | 1.3(4x+2)=5x | | 5x+24=3x+6 | | 42-2=x | | 2a+4=6a+5 | | 15=1/5x^2 | | 42=x.05 | | 15=-1/5x^2+30 | | 42=x.5 | | x-(.03x)=168000 |

Equations solver categories